
1

Genetic Algorithms

Lecture 22

2

Overview

 Introduction To Genetic Algorithms (GAs)

 GA Operators and Parameters

 GA Hello world

 GA for traveling salesman problem

 GA for best rule finding

3

Introduction To Genetic

Algorithms (GAs)

4

History Of Genetic Algorithms

 “Evolutionary Computing” was introduced in the 1960s

by I. Rechenberg.

 John Holland wrote the first book on Genetic Algorithms

‘Adaptation in Natural and Artificial Systems’ in 1975.

 In 1992 John Koza used genetic algorithm to evolve

programs to perform certain tasks. He called his method

“Genetic Programming”.

5

Traveling Salesman Problem 6

Sample Problem

The Traveling Salesman Problem is defined

as:

‘We are given a set of cities and a symmetric distance

matrix that indicates the cost of travel from each city to

every other city.

The goal is to find the shortest circular tour, visiting

every city exactly once, so as to minimize the total

travel cost, which includes the cost of traveling from the

last city back to the first city’.

7

What Are Genetic Algorithms (GAs)?

Genetic Algorithms are search and

optimization techniques based on Darwin’s

Principle of Natural Selection.

Why GAs

 Evolution is known to be a successful, robust

method to produce adaptations (solutions) to

different environments (problems)

 GAs can search a very large space of

hypotheses containing complex interacting

parts

 GAs are inherently parallelizable

8

9

Darwin’s Principle Of Natural Selection

IF there are organisms that reproduce, and

IF offsprings inherit traits from their progenitors, and

IF there is variability of traits, and

IF the environment cannot support all members of a
growing population,

THEN those members of the population with less-adaptive
traits (determined by the environment) will die out, and

THEN those members with more-adaptive traits
(determined by the environment) will thrive

The result is the evolution of species.

http://en.wikipedia.org/wiki/Species

10

Basic Idea Of Principle Of Natural

Selection

“Select The Best, Discard The Rest”

11

An Example of Natural Selection

 Giraffes have long necks.

Giraffes with slightly longer necks could feed on leaves of higher
branches when all lower ones had been eaten off.

 They had a better chance of survival.

 Favorable characteristic propagated through generations of
giraffes.

 Now, evolved species has long necks.

NOTE: Longer necks may have been a deviant characteristic
(mutation) initially but since it was favorable, was propagated over
generations. Now an established trait.

So, some mutations are beneficial.

12

Evolution Through Natural Selection

Initial Population Of Animals

Struggle For Existence-Survival Of the Fittest

Surviving Individuals Reproduce, Propagate Favorable

Characteristics

Millions Of Years

Evolved Species
(Favorable Characteristic Now A Trait Of Species)

13

Genetic Algorithms Implement

Optimization Strategies By Simulating

Evolution Of Species Through Natural

Selection.

14

Working Mechanism Of GAs
Begin

Initialize

population

Optimum

Solution?

T=T+1

Selection

Crossover

Mutation

N

Evaluate

Solutions

Y

Stop

T =0

15

Simple Genetic Algorithm
Simple_Genetic_Algorithm()

{

Initialize the Population;

Calculate Fitness Function;

While(Fitness Value != Optimal Value)

{

Selection;

//Natural Selection, Survival Of Fittest

Crossover;

//Reproduction

Mutation;

//Mutation

Calculate Fitness Function;

}

}

16

Nature to Computer Mapping

Nature Computer

Population

Individual

Fitness

Chromosome

Gene

Reproduction

(crossover)

Set of initial hypotheses (possible solutions).

Solution to a problem.

Quality of a solution.

Encoding for a Solution.

Part of the encoding of a solution.

Crossover

17

GA Operators and

Parameters

1. Encoding

2. Fitness function

3. Selection

4. Mating (crossover)

5. Mutation

18

1. Encoding

The process of representing the solution in the

form of a string that conveys the necessary

information.

 Just as in a chromosome, each gene controls a

particular characteristic of the individual, similarly, each

bit in the string represents a characteristic of the

solution.

19

Encoding Methods

 Binary Encoding – Most common method of

encoding. Chromosomes are strings of 1s and 0s and

each position in the chromosome represents a particular

characteristic of the problem.

11111110000000011111Chromosome B

10110010110011100101Chromosome A

Representing Hypotheses

Represent

(Outlook = Overcast  Rain)  (Wind = Strong)

by

Outlook Wind

011 10

Represent

IF Wind = Strong THEN PlayTennis = yes

by

Outlook Wind PlayTennis

111 10 10

Don’t care for

Outlook here.

21

Encoding Methods (contd.)

 Permutation Encoding – Useful in scheduling

problems such as the Traveling Salesman Problem

(TSP). Example. In TSP, every chromosome is a string

of numbers, each of which represents a city to be visited

in this order.

8 5 6 7 2 3 1 4 9Chromosome B

1 5 3 2 6 4 7 9 8Chromosome A

22

Encoding Methods (contd.)

 Value Encoding – Used in problems where

complicated values, such as real numbers, are used and

where binary encoding would not suffice.

Good for some problems, but often necessary to develop

some specific crossover and mutation techniques for

these chromosomes.

(left), (back), (left), (right), (forward)Chromosome B

1.235 5.323 0.454 2.321 2.454Chromosome A

23

2. Fitness Function

A fitness function quantifies the optimality of a
solution (chromosome) so that that particular
solution may be ranked against all the other
solutions.

 A fitness value is assigned to each solution depending
on how close it actually is to solving the problem.

 Ideal fitness function correlates closely to goal + quickly
computable.

 Example. In TSP, f(x) is sum of distances between the
cities in solution. The lesser the value, the fitter the
solution is.

24

3. Selection

The process that determines which solutions are
to be preserved and allowed to reproduce and
which ones deserve to die out.

 The primary objective of the recombination operator is to
emphasize the good solutions and eliminate the bad
solutions in a population, while keeping the population
size constant.

 “Selects The Best, Discards The Rest”.

25

Elite Selection

 Sort solutions by fitness (descending).

 Make multiple copies of the top solutions

(parthenogenesis – cloning).

 Eliminate bad solutions from the population

so that multiple copies of good solutions

can be placed in the population.

26

Roulette Wheel Selection

 Each current string in the population has a slot assigned

to it which is in proportion to it’s fitness.

 We spin the weighted roulette wheel thus defined n

times (where n is the total number of solutions).

 Each time Roulette Wheel stops, the string

corresponding to that slot is created.

Strings that are fitter are assigned a larger slot and

hence have a better chance of appearing in the new

population.

27

Example Of Roulette Wheel Selection

No. String Fitness % Of Total

1 01101 169 14.4

2 11000 576 49.2

3 01000 64 5.5

4

10011 361 30.9

Total 1170 100.0

28

Roulette Wheel For Example

Tournament selection

 Tournament Selection: Two members are chosen at

random from a population.

 With some predefined probability p the more fit of

these two is then selected, and with probability 1-p the

less fit hypothesis is selected.

Sometimes TS yields a more diverse population that RS.

30

4. Mating (Crossover)

It is the process in which two chromosomes

(strings) combine their genetic material (bits) to

produce a new offspring which possesses both

their characteristics.

 Two strings are picked from the mating pool (or from

elite) at random to cross over.

 The method chosen depends on the Encoding Method.

31

Crossover Methods

 Single Point Crossover- A random point is
chosen on the individual chromosomes (strings) and
the genetic material is exchanged at this point.

32

Crossover Methods (contd.)

 Single Point Crossover

Chromosome1 11011 | 00100110110

Chromosome 2 11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110

33

Crossover Methods (contd.)

 Two-Point Crossover- Two random points are

chosen on the individual chromosomes (strings) and

the genetic material is exchanged at these points.

Chromosome1 11011 | 00100 | 110110

Chromosome 2 10101 | 11000 | 011110

Offspring 1 10101 | 00100 | 011110

Offspring 2 11011 | 11000 | 110110

NOTE: These chromosomes are different from the last example.

34

Crossover Methods (contd.)

 Uniform Crossover- Each gene (bit) is selected
randomly from one of the corresponding genes of the
parent chromosomes.

Chromosome1 11011 | 00100 | 110110

Chromosome 2 10101 | 11000 | 011110

Offspring 10111 | 00000 | 110110

NOTE: Uniform Crossover yields ONLY 1 offspring.

35

Crossover (contd.)

 Crossover between 2 good solutions MAY NOT

ALWAYS yield a better or as good a solution.

 Since parents are good, probability of the child

being good is high.

 If offspring is not good (poor solution), it will be

removed in the next iteration during “Selection”.

36

Elitism

Elitism is a method which copies the best
chromosome to the new offspring population
before crossover and mutation.

 When creating a new population by crossover or
mutation the best chromosome might be lost.

 Forces GAs to retain some number of the best
individuals at each generation.

 Has been found that elitism significantly improves
performance.

37

5. Mutation

It is the process by which a string is deliberately

changed so as to maintain diversity in the

population set.

We saw in the giraffes’ example, that mutations could be

beneficial.

Mutation Probability- determines how often the

parts of a chromosome will be mutated.

38

Example Of Mutation

 For chromosomes using Binary Encoding, randomly

selected bits are inverted.

Offspring 11011 00100 110110

Mutated Offspring 11010 00100 100110

NOTE: The number of bits to be inverted depends on the Mutation Probability.

39

Advantages Of GAs

 Global Search Methods: GAs search for the

function optimum starting from a population of points of

the function domain, not a single one. This characteristic

suggests that GAs are global search methods. They can,

in fact, climb many peaks in parallel, reducing the

probability of finding local minima, which is one of the

drawbacks of traditional optimization methods.

40

Advantages of GAs (contd.)

 Blind Search Methods: GAs only use the

information about the objective function. They do not

require knowledge of the first derivative or any other

auxiliary information, allowing a number of problems to

be solved without the need to formulate restrictive

assumptions. For this reason, GAs are often called blind

search methods.

41

Advantages of GAs (contd.)

 GAs use probabilistic transition rules during

iterations, unlike the traditional methods that use fixed

transition rules.

This makes them more robust and applicable to a large

range of problems.

42

Advantages of GAs (contd.)

 GAs can be easily used in parallel machines-
Since in real-world design optimization problems, most

computational time is spent in evaluating a solution, with

multiple processors all solutions in a population can be

evaluated in a distributed manner. This reduces the

overall computational time substantially.

GA Hello World

 Simple example: random population of

strings evolves into a predefined template

“Hello World”

 For simplicity:

 random strings have the same length as the target

string

 Fitness function is calculated as the closeness of

the given string to the target string

43

Encoding possible solutions

 Sequences of characters

 Start from a population of random strings

44

//build initial population

ArrayList <String> population=new ArrayList<String>();

Random generator = new Random();

for(int i=0;i<population_size;i++)

{

char [] newIndividual=new char[target_length];

for(int j=0;j<target_length;j++)

newIndividual[j]=(char)(generator.nextInt(32000)%90 + 32);

population.add(new String(newIndividual));

}

return population;

Fitness function

 Compares each member of the population with the target

string. It adds up the differences between the characters

and uses the cumulative sum as the fitness value

(therefore, the lower the value, the better).

45

public double string_fitness (String individual)

{

double fitness=0;

for (int ipos=0; ipos<target_length;ipos++)

fitness+=Math.abs(individual.charAt(ipos) -

TARGET_STRING.charAt(ipos)) ;

return fitness;

}

Mate operation (crossover)

public String string_crossover(String parent1, String parent2)

{

Random generator = new Random();

int ipos = generator.nextInt(target_length-1);

return parent1.substring(0,ipos)+parent2.substring(ipos);

}

46

Mutation Operation
public String mutate_string(String individual)

{

Random generator = new Random();

int ipos = generator.nextInt(target_length);

//mutation changes character at random to any available

character from 32 (space) to 90 (Z)

char rchar=(char)(generator.nextInt(32000)%90 + 32);

char [] indToChars=individual.toCharArray();

indToChars[ipos]=rchar;

String mutatedIndividual=new String(indToChars);

return mutatedIndividual;

} 47

Selection: Elitism
currentIteration++;

individual_scores=new ArrayList<Individual>();

for(int j=0;j<population.size();j++)

{

String currString=population.get(j);

Individual curr=new Individual();

curr.str=currString;

curr.fitness=string_fitness(currString);

individual_scores.add(curr);

}

Collections.sort(individual_scores);

48

Selection: Elitism (Cont.)
// Start with the pure winners

for(int k=0;k<top_elite;k++)

population.add(individual_scores.get(k).str);

// Add mutated and bred forms of the winners

Random generator = new Random();

while (population.size()<original_population_size)

{

//mutate with the mutation_probability

double r = generator.nextDouble();

if (r<mutation_probability) {

String mutated=mutate_string(population.get(c));

population.add(mutated);

}

else

{

49

Selection: Elitism (Cont.)
// Start with the pure winners

for(int k=0;k<top_elite;k++)

population.add(individual_scores.get(k).str);

// Add mutated and bred forms of the winners

Random generator = new Random();

while (population.size()<original_population_size)

{ …

else {

//Crossover

int c1=generator.nextInt(top_elite);

int c2=generator.nextInt(top_elite);

String child= string_crossover(population.get(c1),population.get(c2));

population.add(child);

}

}

50

Random optimizer: for comparison

 Random searching isn't a very good optimization

method, but it makes it easy to understand

exactly what all the algorithms are trying to do,

and it also serves as a baseline so you can see

if the other algorithms are doing a good job.

 The random optimizer randomly generates

202,800 random guesses and applies a fitness

function for each guess. It keeps track of the

best guess (the one with the lowest cost) and

returns it.

51

52

Genetic Algorithms To Solve

The Traveling Salesman

Problem (TSP)

Traveling Salesman Problem 53

The Problem

The Traveling Salesman Problem is defined

as:

‘We are given a set of cities and a symmetric distance

matrix that indicates the cost of travel from each city to

every other city.

The goal is to find the shortest circular tour, visiting

every city exactly once, so as to minimize the total

travel cost, which includes the cost of traveling from the

last city back to the first city’.

54

Encoding

 Encode every city with an integer .

 Consider 6 Indian cities –

Mumbai, Nagpur , Calcutta, Delhi , Bangalore and
Chennai and assign a number to each.

Mumbai 1

Nagpur 2

Calcutta 3

Delhi 4

Bangalore 5

Chennai 6

55

Encoding (contd.)

 Thus a path would be represented as a sequence of

integers from 1 to 6.

 The path [1 2 3 4 5 6] represents a path from Mumbai to

Nagpur, Nagpur to Calcutta, Calcutta to Delhi, Delhi to

Bangalore, Bangalore to Chennai, and finally from

Chennai to Mumbai.

 This is an example of Permutation Encoding as the

position of the elements determines the fitness of the

solution.

56

Fitness Function

 The fitness function will be the total cost of the tour

represented by each chromosome.

 This can be calculated as the sum of the distances

traversed in each travel segment.

The lesser the sum, the fitter the solution

represented by that chromosome.

57

Distance/Cost Matrix For TSP

Cost matrix for six city example.
Distances in Kilometers

1 2 3 4 5 6

1 0 863 1987 1407 998 1369

2 863 0 1124 1012 1049 1083

3 1987 1124 0 1461 1881 1676

4 1407 1012 1461 0 2061 2095

5 998 1049 1881 2061 0 331

6 1369 1083 1676 2095 331 0

58

Fitness Function (contd.)

 So, for a chromosome [4 1 3 2 5 6], the total cost of

travel or fitness will be calculated as shown below

 Fitness = 1407 + 1987 + 1124 + 1049 + 331+ 2095

= 7993 kms.

 Since our objective is to Minimize the distance, the

lesser the total distance, the fitter the solution.

59

Selection Operator

Use Tournament Selection.

As the name suggests tournaments are played between

two solutions and the better solution is chosen and

placed in the mating pool.

Two other solutions are picked again and another slot in

the mating pool is filled up with the better solution.

60

Tournament Selection (contd.)

 6 3 4 5 2 1

8479

 2 6 3 4 5 1

8142

 4 1 3 2 5 6
7993

 4 3 2 1 5 6
6872

 3 6 4 1 2 5
8971

 4 1 3 2 5 6
7993

 4 3 2 1 5 6

6872

 6 3 4 5 2 1

8479

 3 6 4 1 2 5

8971

 5 2 6 4 3 1

8673

 5 2 6 4 3 1

8673

 2 6 3 4 5 1

8142

 4 3 2 1 5 6
6872

 5 2 6 4 3 1
8673

 4 1 3 2 5 6
7993

 2 6 3 4 5 1
8142

 4 3 2 1 5 6
6872

 2 6 3 4 5 1
8142

Mating Pool

61

Why we cannot use single-point

crossover:

 Single point crossover method randomly selects a

crossover point in the string and swaps the substrings.

 This may produce some invalid offsprings as shown

below.

4 1 3 2 5 6

4 3 2 1 5 6

4 1 3 1 5 6

4 3 2 2 5 6

62

Crossover Operator

 Use the Enhanced Edge Recombination operator
(T.Starkweather, et al, 'A Comparison of Genetic
Sequencing Operators, International Conference of GAs,
1991) .

 This operator is different from other genetic sequencing
operators in that it emphasizes adjacency information
instead of the order or position of items in the sequence.

 The algorithm for the Edge-Recombination Operator
involves constructing an Edge Table first.

63

Edge Table

The Edge Table is an adjacency table that lists links into

and out of a city found in the two parent sequences.

If an item is already in the edge table and we are trying to

insert it again, that element of a sequence must be a

common edge and is represented by inverting it's sign.

64

Finding The Edge Table

Parent 2

Parent 1 4 1 3 2 5 6

4 3 2 1 5 6

-4-56

-6215

31-64

4-213

15-32

52341

65

Enhanced Edge Recombination Algorithm
1. Choose the initial city from one of the two parent tours. (It can be

chosen randomly as according to criteria outlined in step 4). This
is the current city.

2. Remove all occurrences of the current city from the left hand side
of the edge table.(These can be found by referring to the edge-list
for the current city).

3. If the current city has entries in it's edge-list, go to step 4
otherwise go to step 5.

4. Determine which of the cities in the edge-list of the current city has
the fewest entries in it's own edge-list. The city with fewest entries
becomes the current city. In case a negative integer is present, it
is given preference. Ties are broken randomly. Go to step 2.

5. If there are no remaining unvisited cities, then stop. Otherwise,
randomly choose an unvisited city and go to step 2.

66

Example Of Enhanced Edge

Recombination Operator

52341

4 4 6

-4-56

-6235

31-64

4-213

15-32

-56

-6235

31-64

-213

15-32

5231

Step 1 Step 2

67

Example Of Enhanced Edge

Recombination Operator (contd.)

4 6 5 4 6 5 3

6

235

314

-213

1-32

231

-56

235

314

-213

15-32

5231

Step 3 Step 4

68

Example Of Enhanced Edge

Recombination Operator (contd.)

4 6 5 3 2

6

235

34

-23

-32

231

4 6 5 3 2 1

6

25

4

-23

2

21

Step 5 Step 6

69

Mutation Operator

 The mutation operator induces a change in the solution,

so as to maintain diversity in the population and prevent

Premature Convergence.

 We mutate the string by randomly selecting any two

cities and interchanging their positions in the solution,

thus giving rise to a new tour.

4 1 3 2 5 6

4 5 3 2 1 6

70Input to the Program

71
Initial Output For 20 cities : Distance=34985 km

Initial Population

72
Final Output For 20 cities : Distance=13170 km

Generation 4786

73

Genetic Algorithms To Find

Best Rules

Representing Hypotheses

(Binary encoding)
Represent

(Outlook = Overcast  Rain)  (Wind = Strong)

by

Outlook Wind

011 10

Represent

IF Wind = Strong THEN PlayTennis = yes

by

Outlook Wind PlayTennis

111 10 10

Crossover and mutation

GABIL [DeJong et al. 1993]

 Learn a set of rules

Representation:

 Each hypothesis is a set of rules

 To represent a set of rules, the bit-string representation

of individual rules are concatenated

Example

IF a1 = T AND a2 = F THEN c = T;

IF a2 = T THEN c = F

a1 a2 c a1 a2 c

10 01 1 11 10 0

Fitness function for a set of rules

Fitness function:

Fitness(h) = (correct(h))2

correct(h): the percent of all training examples

correctly classified

Mutation and crossover

 Use the standard mutation operator

 Crossover: extension of the two-point crossover operator

 want variable length rule sets

 want only well-formed bitstring hypotheses

 Crossover with variable-length bitstrings

1. choose two crossover points for h1. Let d1 (d2) be the

distance to the rule boundary immediately to its left.

2. now restrict points in h2 to those that have the same

d1 and d2 value

Crossover example
a1 a2 c a1 a2 c

h1 : 10 01 1 11 10 0

h2 : 01 11 0 10 01 0

Suppose crossover points for h1, are after bits 1, 8
(d1=1;d2=3)

a1 a2 c a1 a2 c

h1 : 1[0 01 1 11 1]0 0

Allowed pairs of crossover points for h2 are <1;3>, <1;8>,
<6;8>.

If pair <1;3> is chosen,

a1 a2 c a1 a2 c

h2 : 0[1 1]1 0 10 01 0

the result is:

Crossover example (cont.)

a1 a2 c a1 a2 c

h1 : 1[0 01 1 11 1]0 0

h2 : 0[1 1]1 0 10 01 0

a1 a2 c

c1 : 11 10 0

a1 a2 c a1 a2 c a1 a2 c

c2 : 00 01 1 11 11 0 10 01 0

81

Summary

82

 Genetic Algorithms (GAs) implement optimization
strategies based on simulation of the natural law of
evolution of a species by natural selection

 The basic GA Operators are:

Encoding

Selection

Crossover

Mutation

 GAs have been applied to a variety of function
optimization problems, and have been shown to be
highly effective in searching a large, poorly defined
search space even in the presence of difficulties such as
high-dimensionality, multi-modality, discontinuity and
noise.

